Main Article Content

Abstract

RÉSUMÉ
L'électroneuromyographie (ENMG) occupe une place capitale dans la prise en charge des pathologies neurologiques périphériques, son interprétation passe par la connaissance des valeurs de références afin de distinguer le pathologique du normal. Cette étude avait pour objectif de déterminer les valeurs de référence des paramètres ENMG du laboratoire de neurophysiologie clinique du centre hospitalier universitaire de Brazzaville. Des enregistrements des paramètres ENMG ont été effectué sur un échantillon de 47 volontaires sains d’un âge compris entre 18 et 63 ans, entre mai et août 2017. A été investiguée, la conduction nerveuse motrice et/ou sensitive des nerfs médian, ulnaire et radial aux membres supérieurs et celle des nerfs fibulaire, tibial et sural aux membres inférieurs, par un appareil ENMG fixe de la marque Micromed® doté du logiciel system PLUS EVOLUTION. La valeur de référence pour les amplitudes et les vitesses de conduction a été exprimée en termes de moyenne - 2DS (déviations standards) et celle des latences en moyenne + 2DS. Des transformations mathématiques ont été réalisées pour les paramètres ne présentant pas de distribution normale selon la loi Gaussienne évaluée par le test de -Shapiro-Wilk.. Ces valeurs de référence offrent une base pour l’interprétation des examens ENMG dans notre environnement de travail. La prise en compte des facteurs de variabilités ultérieurement permettrait une personnalisation de ces normes.
ABSTRACT
Electroneuromyography (ENMG) is an essential examination in the management of peripheral neurological pathologies, its interpretation requires knowledge of the reference values in order to distinguish the pathological from the normal. The objective of this study was to determine the reference values of the ENMG parameters of the clinical neurophysiology laboratory of the Brazzaville university hospital center. ENMG parameter recordings were made on a sample of 47 healthy volunteers aged between 18 and 63 years, from May to August 2017. The motor and/or sensory nerve conduction of the median, ulnar and radial nerves in the upper limbs and that of the peroneal, tibial and sural nerves in the lower limbs was investigated by a fixed ENMG device from the Micromed® ENMG equipped with PLUS EVOLUTION system software. The reference value for amplitudes and conduction velocities was expressed in terms of mean – 2SD (standard deviations) and that of latencies as mean + 2SD. Mathematical transformations were carried out for the parameters not exhibiting a normal distribution according to the Gaussian law, evaluated by the Shapiro-Wilk test. Data analysis was performed on SPSS 20.0. These reference values provide a basis for the interpretation of EMG examinations in our work environment. The consideration of variability factors subsequently allows customization of these standards.

Article Details

How to Cite
Mpandzou, G., Sounga Bandzouzi, P., Diatewa, J., Kane, M., Moutoula-Latou, D., Kaba, Y., Boudzoumou, E., Obondzo Aloba, K., & Ossou-Nguiet, P. (2022). Valeurs de Référence des Paramètres Électroneuromyographiques du Laboratoire de Neurophysiologie Clinique du Centre Hospitalier Universitaire de Brazzaville. HEALTH SCIENCES AND DISEASE, 23(2 Suppl 1). https://doi.org/10.5281/hsd.v23i2 Suppl 1.3421

References

  1. Fournier E. Électromyographie. EMC. 2010:17-30.
  2. Fournier E. Atlas d’électromyographie. Paris: Lavoisier; 2013. 360 p.
  3. Fournier E. Sémiologie EMG élémentaire. Paris: Lavoisier; 2013. 288 p.
  4. Kumbhare D, Robinson L, Buschbacher R. Buschbacher's manual of nerve conduction studies. 3rd ed. New York: Springer Publishing Company; 2015.
  5. Dorfman LJ, Robinson LR. AAEM minimonograph #47: normative data in electrodiagnostic medicine. ff. Muscle Nerve. 1997;20(1):4-14.
  6. Campbell WW, Robinson LR. Deriving reference values in electrodiagnostic medicine. Muscle Nerve. 1993;16(4):424-8.
  7. Eisen A, Schulzer M, Pant B, MacNeil M, Stewart H, Trueman S, et al. Receiver operating characteristic curve analysis in the prediction of carpal tunnel syndrome: a model for reporting electrophysiological data. Muscle Nerve. 1993;16(7):787-96.
  8. Geffré A, Friedrichs K, Harr K, Concordet D, Trumel C, Braun JP. Reference values: a review. Veterinary clinical pathology. 2009;38(3):288-98.
  9. Horowitz GL, Altaie S, Boyd JC, Ceriotti F, Garg U, Horn P, et al. Defining, establishing, and verifying reference intervals in the clinical laboratory. 3rd ed. Wayne: Clinical and Laboratory Standards Institute; 2010. 72 p.
  10. Al-hamadani HA, Mahdi ZA, Al-Saffar F, Fayahd AS. Normative Data of Needle Electromyography, What Is Different in Iraqi Patients? Iraqi Postgraduate Medical Journal. 2012;11(4).
  11. Pan H, Lin J, Chen N, Jian F, Zhang Z, Ding Z, et al. Normative data of F-wave measures in China. Clin Neurophysiol. 2013;124(1):183-9.
  12. Solberg HE, Gräsbeck R. Reference values. Advances in clinical chemistry. 1989;27:1-79.
  13. Robinson LR. Chapter 23 Reference value determination. In: Kimura J, editor. Handbook of Clinical Neurophysiology. 7: Elsevier; 2006. p. 511-25.
  14. Robinson LR, Temkin NR, Fujimoto WY, Stolov WC. Effect of statistical methodology on normal limits in nerve conduction studies. Muscle Nerve. 1991;14(11):1084-90.
  15. Jabre JF, Pitt MC, Deeb J, Chui KK. E-norms: a method to extrapolate reference values from a laboratory population. J Clin Neurophysiol. 2015;32(3):265-70.
  16. Rivner MH. Statistical errors and their effect on electrodiagnostic medicine. Muscle Nerve. 1994;17(7):811-4.
  17. Jones LK, Jr. Nerve conduction studies: basic concepts and patterns of abnormalities. Neurol Clin. 2012;30(2):405-27.
  18. Serror P. Les conductions nerveuses : les techniques, les pièges, leurs solutions. 3ème ed. Paris: Elsevier Masson; 2015. 151 p.
  19. Bolton CF, Sawa GM, Carter K. The effects of temperature on human compound action potentials. J Neurol Neurosurg Psychiatry. 1981;44(5):407-13.
  20. Buzatu S. The temperature-induced changes in membrane potential. Riv Biol. 2009;102(2):199-217.
  21. Buschbacher RM. Body mass index effect on common nerve conduction study measurements. Muscle Nerve. 1998;21(11):1398-404.
  22. Oh SJ. Clinical electromyography: nerve conduction studies. 3rd ed. Philadelphia: Lippincott Williams and Wilkins; 2003. 848 p.
  23. Stälberg E, Falck B. Motor nerve conduction study. Method Clin Neurophysiol. 1993;4:61-80.
  24. Stålberg E, van Dijk H, Falck B, Kimura J, Neuwirth C, Pitt M, et al. Standards for quantification of EMG and neurography. Clin Neurophysiol. 2019;130(9):1688-729.